Abstract
A thermoelectric generator (TEG) is a low-voltage high-current dc power source with a linear V–I characteristic, and therefore, it is desirable to create a power converter with a topology and control method suited to these attributes. Due to the TEG’s low voltage, a topology that produces a high step-up gain for a moderate duty cycle is required to reduce voltage and current stresses within the converter. The linear V–I characteristic produces a P–I characteristic with a flatter peak relative to other sources. This can result in large operating point variations while performing maximum power point tracking (MPPT); thus, an algorithm with low steady-state error is desired. This paper presents a novel high step-up dc/dc converter topology operating with a fractional short-circuit MPPT algorithm for use with a 4.2-V, 3.4-A (for matched load at <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\Delta T = \hbox{270}\,^{\circ }$</tex></formula> C) TEG module and a converter output of 180 V. Compared to existing high step-up dc/dc converters, the proposed converter achieves higher gain with similar component count. Experimental results are reported to confirm the converter analysis and better performance of the short-circuit MPPT algorithm over the perturb and observe algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.