Abstract

Achieving multi-bit data storage in one transistor is a promising strategy to further multiply the storage density of the nonvolatile memories (NVMs). Low-voltage programming/erasing (P/E) operation is a prerequisite for the commercialization of the multi-bit NVMs. And, the fast P/E switching is also a desirable figure of merit for the practical NVMs. Here, we develop a route to achieve a high-speed, low-voltage P/E flexible organic transistor-based NVM, by processing a monolayer buffered ferroelectric terpolymer insulator. The physical mechanisms for achieving the high-speed, low-voltage P/E properties in the organic transistor-based NVMs are investigated. As a result, high-performance flexible 2-bit NVMs are achieved, with the low P/E voltage of ±15 V, fast P/E switching capability of 50 ns, high mobility up to 7.4 cm2 V−1 s−1, high stable retention time up to 10 years, reliable endurance over 200 cycles, good mechanical bending durability, and atmosphere stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.