Abstract

Privacy amplification (PA) is a vital procedure in quantum key distribution (QKD) to shrink the eavesdropper's information about the final key almost to zero. With the increase of repeat frequency of discrete variable QKD (DV-QKD) system, PA processing speed has become the bottleneck in many high-speed DV-QKD systems. In this paper, a high-speed adaptive field-programmable gate array (FPGA)-based PA scheme using a fast Fourier transform (FFT) is presented. To decrease the computation complexity, a modified 2-D FFT-based Toeplitz PA scheme is designed. To increase the processing speed of the scheme on the constraint of limited resources, a real-value oriented FFT acceleration method and a fast read/write balanced matrix transposition method are designed and implemented in our scheme. The experimental results on a Xilinx Virtex-6 FPGA demonstrate that the throughput is nearly double of the latest FPGA based Toeplitz PA scheme according to the literature. Besides, this scheme owns not only the good adaptivity to compression ratio but also the compression ratio independent resource consumption. Therefore, this scheme can fit many high-speed QKD applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.