Abstract

We describe the setup and apply two algorithms for fast imaging in a sample raster scanning two photon microscope. Imaging can be performed at a rate of 1–100 lines per second with a closed loop piezo actuator, and the detection is performed via avalanche photodiodes. This allows to investigate single molecule emission with 50 ms time resolution. In a slow scanning algorithm we have implemented fluorescence fluctuation analysis by computing the photon counting histogram (PCH) on each pixel of the image. In a fast-scan acquistion method the image acquistion rate is 5 lines per second on a large field of view and high resolution(50 nm scanning step, 100×100 μm2 field of view) and ≅100 lines per second on smaller field of views with optically limited resolution (200 nm scanning step, 20×20 μm2 field of view). This figure, which is lower than the typical value for normal confocal scanning imaging (≅500 lines per second), allows nevertheless to perform imaging studies of extended samples in reasonable times for intracellular kinetics and interactions. With this setup and by means of the PCH analysis we are able to discriminate between local concentration and molecular brightness on extended samples also at the level of the single molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.