Abstract

A novel approach to the determination of steroid entrapment in the bilayers of aerosolised liposomes has been introduced using high-sensitivity differential scanning calorimetry (DSC). Proliposomes were dispersed in water within an air-jet nebuliser and the energy produced during atomisation was used to hydrate the proliposomes and generate liposome aerosols. Proliposomes that included the steroid beclometasone dipropionate (BDP) produced lower aerosol and lipid outputs than steroid-free proliposomes. Size analysis and transmission electron microscopy showed an evidence of liposome formation within the nebuliser, which was followed by deaggregation and size reduction of multilamellar liposomes on nebulisation to a two-stage impinger. For each formulation, no difference in thermal transitions was observed between delivered liposomes and those remaining in the nebuliser. However, steroid (5 mole%) lowered the onset temperature and the enthalpy of the pretransition, and produced a similar onset temperature and larger enthalpy of the main transition, with broadened pretransition and main transitions. This indicates that BDP was entrapped and exhibited an interaction with the liposome phospholipid membranes. Since the pretransition was depressed but not completely removed and no phase separation occurred, it is suggested that the bilayers of the multilamellar liposomes can entrap more than 5 mole% BDP. Overall, liposomes were generated from proliposomes and DSC investigations indicated that the steroid was entrapped in the bilayers of aerosolised multilamellar vesicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.