Abstract

Astrand displacement-based "signal-off" electrochemical aptasensor is reportedfor the detection of Mucin 1 (MUC 1) based on a high original signal. Different from the conventional "signal-off" electrochemical biosensors where electrochemical substances are dispersed in electrolyte solution, here the current signal was generated by the complementary probe (CP) associated with ferrocene (Fc) labeled aptamer (Apt.-Fc). Because Apt.-Fc and MUC 1 have a higher affinity, Apt.-Fc dissociates from CP in the presence of MUC 1, resulting in a reduction of detection current signal generated by oxidation of labeled Fc. In this system, high detection signal is necessary to improve the sensor's performance. For this aim, a strategy is proposed for changing the modalities of electron transport and the quantity of Apt.-Fc introduced by simply tuning the sequence constitution of CP. As expected, a high detection current signal was obtained after selecting CP(Apt.-Fc)-TTT as the optimal CP. The aptasensor was then employed to detect MUC 1, and satisfactory detection results with a low detection limit (LOD) of 0.087pM (S/N = 3), good specificity, goodstability, and feasibility of detection of MUC 1in artificial serum (recovery of 92-101%, RSD of 1.36-5.23%) were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.