Abstract

The face-centered cubic/hexagonal close-packed (fcc/hcp) martensite phase transformation in a Co-31.8 wt pct Ni alloy was studied by high-resolution transmission electron microscopy (HRTEM). The HRTEM was used to study the structure and properties of intersections between martensite plates and other defects observed in the alloy such as stacking fault tetrahedra (SFT) and Z-type defects. The HRTEM was also used to attempt to determine if various proposed mechanisms for the fcc/hcp martensite transformation were operating. There is evidence to suggest that the reflection mechanism proposed by Bollmann and the dipole mechanism proposed by Hirth are active in the fcc/hcp martensitic transformation, although the evidence is not completely certain in either case. Growth of the hcp phase by a four- or six-plane mechanism as proposed by Mahajanet al. is possible in theory but was not observed in this study. Transformation by previously proposed pole mechanisms was also not observed in this study, although evidence for a new type of pole mechanism was found. The formation of SFT along the fcc/hcp martensite interface was observed to occur by the cross-slip of Shockley partial dislocations out of the fcc/hcp interface onto conjugate fcc matrix planes, followed by further cross-slip to form the SFT, as previously observed for grain boundaries in fcc alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.