Abstract

Recent studies have indicated significant correlation between the concentration of immune checkpoint markers borne by extracellular vesicles (EVs) and the efficacy of immunotherapy. This study introduces a high-resolution spiral microfluidic channel-integrated electrochemical device (HiMEc), which is designed to isolate and detect EVs carrying the immune checkpoint markers programmed death ligand 1 (PD-L1) and programmed death protein 1 (PD-1), devoid of plasma-abundant lipoprotein contamination. Antigen-antibody reactions were applied to immobilize the lipoproteins on bead surfaces within the plasma, establishing a size differential with EVs. A plasma sample was then introduced into the spiral microfluidic channel, which facilitated the acquisition of nanometer-sized EVs and the elimination of micrometer-sized lipoprotein-bead complexes, along with the isolation and quantification of EVs using HiMEc. PD-L1 and PD-1 expression on EVs was evaluated in 30 plasma samples (10 from healthy donors, 20 from lung cancer patients) using HiMEc and compared to the results obtained from standard tissue-based PD-L1 testing, noting that HiMEc could be utilized to select further potential candidates. The obtained results are expected to contribute positively to the clinical assessment of potential immunotherapy beneficiaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.