Abstract

We present the first recording of the high-resolution spectrum of an induced chiral dimer. Three conformers of the induced chiral dimers of ethanol have been observed using a pulsed molecular-beam Fourier transform microwave spectrometer. The rotational constants of the normal isotopomers of the three species have been determined to be (a) A=5113.826(5), B=1329.7214(4), and C=1257.5151(3) MHz, (b) A=5086.459(5), B=1316.6508(4), and C=1243.6329(4) MHz, and (c) A=4851.608(5), B=1369.7558(6), and C=1243.4184(4) MHz. The observed species have been assigned to calculated structures via Kraitchman double substitution analyses and ab initio calculations. The Kraitchman analyses and the fitted centrifugal distortion parameters suggest that the deuterium bond is significantly stronger than the hydrogen bond in the dimers of ethanol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.