Abstract

We have combined a novel low temperature positioning mechanism with a single-chip miniature superconducting quantum interference device (SQUID) magnetometer to form an extremely sensitive new magnetic microscope, with a demonstrated spatial resolution of ∼10 μm. The design and operation of this scanning SQUID microscope will be described. The absolute calibration of this instrument with an ideal point source, a single vortex trapped in a superconducting film, will be presented, and a representative application will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.