Abstract

BackgroundWhole genome sequencing provides better delineation of transmission clusters in Mycobacterium tuberculosis than traditional methods. However, its ability to reveal individual transmission links within clusters is limited. Here, we used a 2-step approach based on Bayesian transmission reconstruction to (1) identify likely index and missing cases, (2) determine risk factors associated with transmitters, and (3) estimate when transmission happened.Methods and findingsWe developed our transmission reconstruction method using genomic and epidemiological data from a population-based study from Valencia Region, Spain. Tuberculosis (TB) incidence during the study period was 8.4 cases per 100,000 people. While the study is ongoing, the sampling frame for this work includes notified TB cases between 1 January 2014 and 31 December 2016. We identified a total of 21 transmission clusters that fulfilled the criteria for analysis. These contained a total of 117 individuals diagnosed with active TB (109 with epidemiological data). Demographic characteristics of the study population were as follows: 80/109 (73%) individuals were Spanish-born, 76/109 (70%) individuals were men, and the mean age was 42.51 years (SD 18.46). We found that 66/109 (61%) TB patients were sputum positive at diagnosis, and 10/109 (9%) were HIV positive. We used the data to reveal individual transmission links, and to identify index cases, missing cases, likely transmitters, and associated transmission risk factors. Our Bayesian inference approach suggests that at least 60% of index cases are likely misidentified by local public health. Our data also suggest that factors associated with likely transmitters are different to those of simply being in a transmission cluster, highlighting the importance of differentiating between these 2 phenomena. Our data suggest that type 2 diabetes mellitus is a risk factor associated with being a transmitter (odds ratio 0.19 [95% CI 0.02–1.10], p < 0.003). Finally, we used the most likely timing for transmission events to study when TB transmission occurred; we identified that 5/14 (35.7%) cases likely transmitted TB well before symptom onset, and these were largely sputum negative at diagnosis. Limited within-cluster diversity does not allow us to extrapolate our findings to the whole TB population in Valencia Region.ConclusionsIn this study, we found that index cases are often misidentified, with downstream consequences for epidemiological investigations because likely transmitters can be missed. Our findings regarding inferred transmission timing suggest that TB transmission can occur before patient symptom onset, suggesting also that TB transmits during sub-clinical disease. This result has direct implications for diagnosing TB and reducing transmission. Overall, we show that a transition to individual-based genomic epidemiology will likely close some of the knowledge gaps in TB transmission and may redirect efforts towards cost-effective contact investigations for improved TB control.

Highlights

  • Better understanding of tuberculosis (TB) transmission is key for TB control in the 21st century

  • We found that index cases are often misidentified, with downstream consequences for epidemiological investigations because likely transmitters can be missed

  • Our findings regarding inferred transmission timing suggest that TB transmission can occur before patient symptom onset, suggesting that TB transmits during sub-clinical disease

Read more

Summary

Introduction

Better understanding of tuberculosis (TB) transmission is key for TB control in the 21st century. More recent evidence suggests that the transition between these different states is fuzzy, and that TB development may be better represented as a spectrum of clinical and sub-clinical states [2]. The degree to which sub-clinical disease contributes to transmission is largely unknown, because tools to detect sub-clinical disease have only recently become available [3,4]. Whole genome sequencing provides better delineation of transmission clusters in Mycobacterium tuberculosis than traditional methods. Its ability to reveal individual transmission links within clusters is limited. High-resolution mapping of tuberculosis transmission de Economıa y Competitividad (SAF2016-77346R). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.