Abstract
To develop an efficient acquisition for high-resolution diffusion imaging and allow in vivo whole-brain acquisitions at 600- to 700-μm isotropic resolution. We combine blipped-controlled aliasing in parallel imaging simultaneous multislice (SMS) with a novel slab radiofrequency (RF) encoding gSlider (generalized slice-dithered enhanced resolution) to form a signal-to-noise ratio-efficient volumetric simultaneous multislab acquisition. Here, multiple thin slabs are acquired simultaneously with controlled aliasing, and unaliased with parallel imaging. To achieve high resolution in the slice direction, the slab is volumetrically encoded using RF encoding with a scheme similar to Hadamard encoding. However, with gSlider, the RF-encoding bases are specifically designed to be highly independent and provide high image signal-to-noise ratio in each slab acquisition to enable self-navigation of the diffusion's phase corruption. Finally, the method is combined with zoomed imaging (while retaining whole-brain coverage) to facilitate low-distortion single-shot in-plane encoding with echo-planar imaging at high resolution. A 10-slices-per-shot gSlider-SMS acquisition was used to acquire whole-brain data at 660 and 760 μm isotropic resolution with b-values of 1500 and 1800 s/mm2 , respectively. Data were acquired on the Connectome 3 Tesla scanner with 64-channel head coil. High-quality data with excellent contrast were achieved at these resolutions, which enable the visualization of fine-scale structures. The gSlider-SMS approach provides a new, efficient way to acquire high-resolution diffusion data. Magn Reson Med 79:141-151, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.