Abstract

We present a micromachined scanning probe cantilever, in which a specific higher-order flexural mode is designed to be resonant at an exact integer multiple of the fundamental resonance frequency. We have fabricated such cantilevers by reducing the stiffness of the third order flexural mode relative to the fundamental mode, and we have demonstrated that these cantilevers enable sensing of non-linear mechanical interactions between the atomically sharp tip at the free end of the cantilever and a surface with unknown mechanical properties in tapping-mode atomic force microscopy. Images of surfaces with large topographical variations show that for such samples harmonic imaging has better resolution than standard tapping-mode imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.