Abstract

Imprint lithography has been shown to be an effective method for the replication of nanometer-scale structures from an imprint mask (template) or mold. Step and Flash Imprint Lithography (S-FIL&reg;) is unique in its ability to address both resolution and alignment. Recently overlay across a 200 mm wafer of less than 20nm, 3&sigma; has been demonstrated. Current S-FIL resolution and alignment performance motivates the consideration of nano-imprint lithography as a Next Generation Lithography (NGL) solution for IC production. During the S-FIL process, a transferable image, an imprint, is produced by mechanically molding a liquid UV-curable resist on a wafer. Acceptance of imprint lithography for CMOS manufacturing will require demonstration that it can attain defect levels commensurate with the requirements of cost-effective device production. This report summarizes the result of defect inspections of wafers patterned using S-FIL. Wafer inspections were performed with KLA Tencor- 2132 (KT-2132) and KLA Tencor eS23 (KT-eS32) automated patterned wafer inspection tools. Imprint specific defectivity was shown to be &le;3 cm<sup>-2</sup> with some wafers having defectivity of less than 1 cm<sup>-2</sup> and many fields having 0 imprint specific defects, as measured with the KT-2132. KT eS32 inspection of 32 nm half pitch features indicated that the random defectivity resulting from the imprint process was low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.