Abstract

We present a new method to remove the impact of random and small-scale noncircular motions from H I velocity fields in (dwarf) galaxies in order to better constrain the dark matter properties for these objects. This method extracts the circularly rotating velocity components from the H I data cube and condenses them into a so-called bulk velocity field. We derive high-resolution (~0.2 kpc) rotation curves of IC 2574 and NGC 2366 based on bulk velocity fields derived from The H I Nearby Galaxy Survey obtained at the Very Large Array. We compare the bulk velocity field rotation curves with those derived from the traditional intensity-weighted mean velocity fields and find significant differences. The bulk velocity field rotation curves are significantly less affected by noncircular motions and constrain the dark matter distribution in our galaxies, allowing us to address the discrepancy between the inferred and predicted dark matter distribution in galaxies (the cusp/core problem). Spitzer Infrared Nearby Galaxies Survey 3.6 μm data, which are largely unaffected by dust in these systems, as well as ancillary optical information, are used to separate the contribution of the baryons from the total matter content. Using stellar population synthesis models, assuming various sets of metallicity and star-formation histories, we compute stellar mass-to-light ratios for the 3.6 μm and 4.5 μm bands. Using our predicted value for the 3.6 μm stellar mass-to-light ratio, we find that the observed dark matter distributions of IC 2574 and NGC 2366 are inconsistent with the cusp-like dark matter halo predicted by Λ Cold Dark Matter models, even after corrections for noncircular motions. This result also holds for other assumptions about the stellar mass-to-light ratio. The distribution of dark matter within our sample galaxies is best described by models with a kpc-sized constant-density core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.