Abstract

This paper proposes a Hermite-kernel realization of the conjugate filter oscillation reduction (CFOR) scheme for the simulation of fluid flows. The Hermite kernel is constructed by using the discrete singular convolution (DSC) algorithm, which provides a systematic generation of low-pass filter and its conjugate high-pass filters. The high-pass filters are utilized for approximating spatial derivatives in solving flow equations, while the conjugate low-pass filter is activated to eliminate spurious oscillations accumulated during the time evolution of a flow. As both low-pass and high-pass filters are derived from the Hermite kernel, they have similar regularity, time-frequency localization, effective frequency band and compact support. Fourier analysis indicates that the CFOR-Hermite scheme yields a nearly optimal resolution and has a better approximation to the ideal low-pass filter than previous CFOR schemes. Thus, it has better potential for resolving natural high frequency oscillations from a shock. Extensive one- and two-dimensional numerical examples, including both incompressible and compressible flows, with or without shocks, are employed to explore the utility, test the resolution, and examine the stability of the present CFOR-Hermite scheme. Small ratio of point-per-wavelength (PPW) is achieved in advancing a wavepacket and resolving a shock/entropy wave interaction. The present results for the advection of an isentropic vortex compare very favorably to those in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.