Abstract

To evaluate techniques for anatomical and physiological imaging of the intracranial optic nerve (ON), optic chiasm (OC), and optic tract (OT) at 3T with the aim of visualizing axonal damage in multiple sclerosis (MS). Imaging was performed on a 3T scanner employing a custom-designed head coil that consisted of a coil array with four coils (30 x 30 cm(2)). Oblique fast spin echo (FSE) images, magnetization transfer (MT)-enhanced 3D gradient-echo (GRE) time-of-flight (TOF) images, and line scan diffusion images (LSDI) were obtained. Full diffusion tensor (DT) analysis was performed, and apparent diffusion coefficient (ADC), fractional anisotropy (FA), and fiber direction maps were obtained. FSE anatomic images were obtained with an in-plane resolution of 0.39 x 0.52 mm(2). The in-plane resolution of the MT and LSDI images was 0.78 x 0.78 mm(2). The OC, intracranial ON, and OT can be seen on these images. The dominant fiber orientations in the OC, ON, and OT, as derived from the DT images, are displayed. This study shows that by using 3T and a custom-designed, four-channel head coil, it is possible to acquire high-resolution anatomical and physiological images of the OC, ON, and OT. The pilot results presented here pave the way for imaging the anterior visual pathway in patients with MS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.