Abstract
Arc discharge is traditionally used to synthesize randomly arranged graphene flakes. In this paper, we substantially modify it into a glow discharge method so that the discharge current is much more reduced. The H2 and/or Ar plasma etching of the graphitic electrode (used to ignite the plasma) is hence much gentler, rendering it possible to grow graphene in thin film format. During the growth at a few mbar, there is no external carbon gas precursor introduced. The carbon atoms and/or carbon containing particles as a result of the plasma etching are emitted in the chamber, some of which undergo gas phase scattering and deposit onto the metallic catalyst substrates (Cu-Ni alloy thin films or Cu foils) as graphene sheets. It is found that high quality monolayer graphene can be synthesized on Cu foil at 900 °C. On Cu-Ni, under the same growth condition, somewhat more bilayer regions are observed. It is observed that the material quality is almost indifferent to the gas ratios, which makes the optimization of the deposition process relatively easy. Detailed study on the deposition procedure and the material characterization have been carried out. This work reveals the possibility of producing thin film graphene by a gas discharge based process, not only from fundamental point of view, but it also provides an alternative technique other than standard chemical vapor deposition to synthesize graphene that is compatible with the semiconductor planar process. As the process uses solid graphite as a source material that is rich in the crust, it is a facile and relatively cheap method to obtain high quality graphene thin films in this respect.
Highlights
Since its appearance, graphene has been applied to solar cells, sensors, composite materials, photocatalysis, and other fields due to its outstanding characteristics such as high carrier mobility, high mechanical strength, high specific surface area, high transmittance, and high thermal conductivity [1]
In a regular CVD, the formation of carbon atoms or carbon containing particles is via the decomposition of hydrocarbons, whereas in glow discharge (GD) it is through the gentle plasma etching of the electrode
GD deposition, deposition, In paper, we we report report aa new new type type of of graphene graphene synthesis synthesis technology technology called using aa standard using standard PECVD
Summary
Graphene has been applied to solar cells, sensors, composite materials, photocatalysis, and other fields due to its outstanding characteristics such as high carrier mobility, high mechanical strength, high specific surface area, high transmittance, and high thermal conductivity [1]. A variant version of the AD method is the synthesis of graphene by the so-called hydrogen AD exfoliation of graphite, which is often with the involvement of graphene oxides [13] It is not very controllable and, most importantly, it is not compatible with today’s semiconductor processing and cannot produce graphene in the format of thin films. The possible deposition mechanism is explained by the plasma-based physical and/or chemical etching of the graphitic electrode, followed by gas phase scattering of the produced carbon atoms and carbon based particles, which are in part transported towards the catalytic surfaces of the metallic substrates situated on the heater. Compared to standard CVD, the GD offers an alternative method that negates the need for work on the precursor gas composition, the decomposition rate, and the large growth parameter space. It is of value to scientists and engineers who work with the synthesis of graphene and its electronic device applications
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.