Abstract

Metal-organic frameworks (MOFs) have appeared to be promising competitive candidates as crystalline porous materials for proton conduction. Explorations of the method of preparation of proton conductive MOFs and the proton transfer mechanism have enabled them to attract widespread attention, and tremendous efforts have been made to improve the proton conductivity of MOFs. On the basis of our previous work, we explicitly propose that ligand exchange can upgrade the proton conduction performance of MOFs. Using MOF-azo as the precursor, the proton conductivities of exchange products MOF-bpy and MOF-bpe increase by 3.5- and 2.8-fold, respectively. After the MOFs had been doped into the Nafion matrix to prepare composite membranes, the proton conduction performance of composite membranes filled with subproducts (2.6 × 10-2 and 1.95 × 10-2 S cm-1) is significantly better than that of a composite membrane filled with a parent product (1.12 × 10-2 S cm-1) under ambient conditions (without heating or humidifying). The ligand exchange strategy presented herein demonstrates great promise for the development of high-proton conductivity MOFs and MOF composites with expanded future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.