Abstract

The progress of high-efficiency non-precious metal anode catalysts for direct seawater splitting is of great importance. However, due to the slow oxygen evolution reaction (OER) kinetics, competition of chlorine evolution reaction (ClER), and corrosion of chloride ions on the anode, the direct seawater splitting faces many challenges. Herein, we develop a perovskite@NiFe layered double hydroxide composite for anode catalyst based on Ba0.5Sr0.5Co0.8Fe0.2O3 (BSCF) and NiFe layered double hydroxide (NiFe-LDH) heterostructure. The optimized BSCF@CeO2@NiFe exhibits excellent OER activity, with the potential at 100 mA cm−2 (Ej = 100) being 1.62 V in the alkaline natural seawater. Moreover, the electrolytic cell composed of BSCF@CeO2@NiFe anode shows an excellent stability, with negligible attenuation during the long-term overall seawater splitting with the remarkable self-recovery ability in the initial operation stage, and the direct seawater splitting potential increasing by about 30 mV at 10 mA cm−2. Our work can give a guidance for the design and preparation of anode catalysts for the direct seawater splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.