Abstract

High energy synchrotron radiation emitted from the bending magnet of the TRISTAN accumulation ring (6.5 GeV) at the National Laboratory for High Energy Physics has been used for the high pressure–high temperature diffraction experiments using a multianvil press system, MAX80. Owing to the specific features of high energy synchroton radiation, significant improvements have been brought to the high pressure research. The wide energy range of diffraction spectrum leads to an increase in the number of observable diffraction peaks in an energy-dispersive method, resulting in an increase in the accuracy of the measurements of the lattice and thermal parameters. Due to the high penetrating power of radiation, diffraction patterns can be taken in a short time from materials containing heavy elements or materials surrounded by a metal foil. Typical examples of high pressure–high temperature experiments with high energy synchrotron radiation are also described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.