Abstract

The increase in photosynthetic photon flux (PPF) and plant temperature associated with supplemental high pressure sodium (HPS) irradiation were investigated during Petunia × hybrids Villm. `Red Flash' seedling development. Seedlings were treated for 14 days following emergence or 5 days after the first true leaf had expanded to 1 mm. Treatments consisted of continuous infrared (IR) radiation (Ambient + IR), ambient conditions with spill-over radiation from adjacent treatments (Ambient - IR), root zone heating to 19.5C (RZ Heat), continuous HPS irradiation at 167 μmol·s-1.m-2 PPF (HPS + IR) or continuous HPS irradiation at 167 μmol-1·m-2 PPF filtered through a water bath to remove IR (HPS - IR). Linear regression of natural log-transformed fresh weights indicated that increasing ambient PPF 53% and elevating plant temperature 4.3C (HPS + IR) increased seedling relative growth rate (RGR) by 45% compared with the control (Ambient - IR). Elevating plant temperature with + IR by 4.8C without supplementing PPF (Ambient + IR) increased RGR by 31% but failed to increase fresh weight (FW) above controls and resulted in etiolated plants that were unsuitable for transplanting. Once plants were removed from supplemental treatment and returned to ambient conditions, RGR for all treatments was similar. The increased FW promoted by IR and HPS treatments was maintained for up to 7 days after treatment. Therefore, the increased seedling growth responses observed with HPS treatment were due primarily to an increase in RGR during HPS treatment that is not sustained beyond treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.