Abstract

In nanoscale cutting of silicon wafer, it has been found that under certain conditions ductile mode chip formation can be achieved. In order to understand the mechanism of the ductile chip formation, experiments and molecular dynamics (MD) simulations have been conducted in this study. The results of MD simulations of nanoscale cutting of silicon showed that because of the high hydrostatic pressure in the chip formation zone, there is a phase transformation of the monocrytslline silicon from diamond cubic structure to both β silicon and amorphous phase in the chip formation zone, which results in plastic deformation of the workpiece material in the chip formation zone, as observed in experiments. The results further showed that although from experimental observation the plastic deformation in the ductile mode cutting of silicon is similar to that in cutting of ductile materials, such as aluminium, in ductile mode cutting of silicon it is the phase transformation of silicon rather than atomic dislocation that results in the plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.