Abstract

We have used high-pressure freezing followed by freeze substitution (HPF/FS) to preserve in vivo grown lily pollen tubes isolated from the style. The results indicated that HPF/FS (i) allows excellent preservation of the pollen tubes, (ii) maintains in situ the stylar matrix secreted by the transmitting tract cells, and (iii) preserves the interactions that exist between pollen tubes. Particular attention has been given to the structure of the pollen tube cell wall and the zone of adhesion. The cell wall is composed of an outer fibrillar layer and an inner layer of material similar in texture and nature to the stylar matrix and that is not callose. The stylar matrix labels strongly for arabinogalactan proteins (AGPs) recognized by monoclonal antibody JIM13. The zone of adhesion between pollen tubes contains distinct matrix components that are not recognized by JIM13, and apparent cross-links between the two cell walls. This study indicates that HPF/FS can be used successfully to preserve in vivo grown pollen tubes for ultrastructural investigations as well as characterization of the interactions between pollen tubes and the stylar matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.