Abstract

To date, the description of a single, suitable method to observe in detail metal oxide nanoparticles in situ within sunscreens is currently lacking, despite growing concern as to how they interact with humans. This study explores the usefulness of transmission electron microscopy to characterize the nanoparticles in sunscreens. High-pressure freezing then freeze substitution was used to prepare resin-embedded commercial sunscreen samples, and ultrathin sections of these were observed with transmission electron microscopy. Conventional room temperature processing for resin embedding was also trialed. High-pressure frozen/freeze substituted samples provided clear visualization of the size and shape of the nanoparticles and agglomerates and allowed further characterization of the composition and crystal form of the metal oxides, while conventionally processed chemically fixed samples were subject to distribution/agglomeration artifacts. Transmission electron microscopy of high-pressure frozen/freeze substituted samples is an ideal method to completely observe metal oxide nanoparticles in situ in sunscreens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.