Abstract

Ultrastructural immunocytochemistry requires that minimal damage to antigens is imposed by the processing methods. Immersion fixation in cross-linking fixatives with their potential to damage antigens is not an ideal approach and rapid freezing as an alternative sample-stabilization step has a number of advantages. Rapid freezing at ambient pressure restricts the thickness of well-frozen material obtainable to approximately 15 microm or less. In contrast, high-pressure freezing has been demonstrated to provide ice-crystal-artefact-free freezing of samples up to 200 microm in thickness. There have been few reports of high-pressure freezing for immunocytochemical studies and there is no consensus on the choice of post-freezing sample preparation. A range of freeze-substitution time and temperature protocols were compared with improved tissue architecture as the primary goal, but also to compare ease of resin-embedding, polymerization and immunocytochemical labelling. Freeze-substitution in acetone containing 2% osmium tetroxide followed by epoxy-resin embedding at room temperature gave optimum morphology. Freeze-substitution in methanol was completed within 18 h and in tetrahydrofuran within 48 h but the cellular morphology of the Lowicryl-embedded samples was not as good as when samples were substituted in pure acetone. Acetone freeze-substitution was slow, taking at least 6 days to complete, and gave blocks which were difficult to embed in Lowicryl HM20. Careful handling of frozen samples avoiding rapid temperature changes reduced apparent ice-crystal damage in sections of embedded material. Thus a slow warm-up to freeze-substitution temperature and a long substitution time in acetone gave the best results in terms of freezing quality and cellular morphology. No clear differences emerged between the different freeze-substitution media from immunocytochemical labelling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.