Abstract

In the recent years different types of dampers for structural control in civil engineering have been developed, where one of the most promising solutions are viscoelastic dampers. In this paper we demonstrate that by utilizing knowledge on the effect of inherent hydrostatic pressure on the time- and frequency-dependent behavior of polymers it is possible to design and build the ultimate insulation systems for civil engineering applications. An optimal solution is achieved by using highly pressurized multimodal granular polymeric materials. The results on case material, Thermoplastic Polyurethane, showed that by increasing inherent pressure of the material from 1 bar to 2000 bar the frequency at which material exhibits its maximal damping properties was shifted from 37 kHz, at P=1 bar to 235 Hz at P=2000 bar. At the same time, the increase of inherent hydrostatic pressure from 1 bar to 2000 bar changes material stiffness up to 2.5 times, while the damping properties increase up to 5.2 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.