Abstract

Novel non-blinking quantum dots (NBQDs) were utilized in three-dimensional super-localization, high-precision tracking applications under an automated scanning-angle total internal reflection fluorescence microscope (SA-TIRFM). NBQDs were randomly attached to stationary microtubules along the radial axis under gliding assay conditions. By automatically scanning through a wide range of incident angles with different evanescent-field layer thicknesses, the fluorescence intensity decay curves were obtained. Fit with theoretical decay functions, the absolute vertical positions were determined with sub-10-nm localization precision. The emission intensity profile of the NBQDs attached to kinesin-propelled microtubules was used to resolve the self-rotation of gliding microtubules within a small vertical distance of ~50 nm. We demonstrate the applicability of NBQDs in high-precision fluorescence imaging experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.