Abstract
Middle infrared and deep ultraviolet high-power high-beam-quality stable-operating He-SrBr2 and Cu+ Ne-CuBr lasers excited in nanosecond pulsed longitudinal discharge are developed, patented and studied. Optimal discharge conditions, such as active zone diameter, vapour pressure, buffer-gas pressure, electrical excitation scheme parameters, average input power and pulse repetition frequency, are found. The highest output laser parameters are obtained for the Sr atom and Cu+ lasers, respectively. These lasers equipped with optical systems for the control of laser radiation parameters are used in a large variety of applications, such as precise material microprocessing, including biological tissues, determination of linear optical properties of different newly developed materials, laser-induced modification of conductive polymers and laser-induced fluorescence in wide-gap semiconductors, instead of free electron and excimer lasers, respectively. A master oscillator-power amplifier system, which is based on a high-beam-quality high-power CuBr vapour laser and is equipped with an optic system for laser beam control and with the X–Y stage controlled by adequate software as well, is developed and used in high-precision micromachining of samples made of nickel and tool steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.