Abstract

We report the development of InGaAsN-based gain mirrors for high-power optically pumped semiconductor disk lasers with direct emission at wavelengths around 1180 nm. The gain mirrors were fabricated by molecular beam epitaxy. They consist of 10 dilute nitride quantum wells, which were placed within a GaAs micro-cavity on top of a GaAs/AlAs distributed Bragg reflector. We demonstrated laser operation at ∼1180 nm with record high output power (∼7 W). The differential efficiency was ∼30% for operation at 5 °C and ∼28% when operating at 15 °C. The lasers exhibited excellent tuning characteristics, delivering an output power of more than 5 W in a narrow spectrum and providing over 30 nm tuning band. These features represent significant progress towards demonstration of practical high-power lasers with frequency-doubled yellow emission required for laser guide stars, life sciences and spectroscopy. At the same time the results emphasize the importance of dilute nitride heterostructures in the development of novel optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.