Abstract

Fe–Co–B–Si–C–Nb amorphous composite coating about 0.6mm in thickness was fabricated by using a one-step laser cladding method. Microstructures and phases were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and electron probe microanalysis. Microhardness and wear resistance tests were conducted to evaluate the mechanical properties of this coating. Near the interface of coating/substrate, the region showed a layered microstructure, which could be generally categorized into three layers: layer I (columnar dendrites phase), layer II (equiaxed dendrites phase) and layer III (amorphous-particle composite phase). The main reason for this layered structure was due to the difference in chemical compositions of the three layers. With regard to mechanical properties, the microhardness and wear resistance of the Fe–Co–B–Si–C–Nb amorphous composite coating also exhibited layered characteristics. The mean value of the microhardness for layer I, layer II and layer III was 729, 680 and 1245HV, respectively. The friction coefficient of the transitional layer III was 0.28 times lower than that of the substrate under the same sliding friction condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.