Abstract

The quality and accuracy of remote sensing instruments continue to increase, allowing geoscientists to perform various quantitative retrieval applications to observe the geophysical variables of land, atmosphere, ocean, etc. The explosive growth of time-series remote sensing (RS) data over large-scales poses great challenges on managing, processing, and interpreting RS ‘‘Big Data.’’ To explore these time-series RS data efficiently, in this paper, we design and implement a high-performance framework to address the time-consuming time-series quantitative retrieval issue on a graphics processing unit cluster, taking the aerosol optical depth (AOD) retrieval from satellite images as a study case. The presented framework exploits the multilevel parallelism for time-series quantitative RS retrieval to promote efficiency. At the coarse-grained level of parallelism, the AOD time-series retrieval is represented as multidirected acyclic graph workflows and scheduled based on a list-based heuristic algorithm, heterogeneous earliest finish time, taking the idle slot and priorities of retrieval jobs into account. At the fine-grained level, the parallel strategies for the major remote sensing image processing algorithms divided into three categories, i.e., the point or pixel-based operations, the local operations, and the global or irregular operations have been summarized. The parallel framework was implemented with message passing interface and compute unified device architecture, and experimental results with the AOD retrieval case verify the effectiveness of the presented framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.