Abstract

LDPC code shows a good performance with long-block codes. However, certain channels are constrained to use short-block codes due to latency. Therefore, concatenated LDPC codes with iterative decoding is a good choice to get a good performance. Concatenated binary LDPC codes were introduced as a class of concatenated codes in which the LDPC codes are irregular codes having different parameters. Although irregular LDPC codes are more efficient than regular codes, irregular LDPC codes have an error floor and a higher encoding complexity than regular code. In this paper, in order to get a good performance/complexity trade-off with a short-block code, we investigate a parallel concatenation of two identical regular binary LDPC codes, using an interleaver. Simulation results show that the proposed code outperforms a single LDPC code. The proposed code needs less time decoding delay than a single LDPC code with the same iteration number. Also, the proposed code needs a less number of iterations to achieve the same performance of a single LDPC code that leads to less decoding complexity and decoding delay. A simplified algorithm, the min-sum algorithm, that is used to decode the component codes shows a small performance loss with respect to the sum-product algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.