Abstract

Dielectric distributed Bragg reflectors (DDBRs) with SiO2/Si3N4 are grown by PECVD alternately. For the etching of DDBR, dry and wet etching methods are both used. The reflectivity of DDBR is calculated by transfer matrix method, and the high performance DDBR structure is fabricated to obtain optimal reliability, we find that the enhancement factor along the cavity axis and the integrated emission enhancement factor of RCLED with 1.5 RC DDBR are 1.058 and 1.5 respectively, a full width at half maximum is 10.5 nm by PL analysis. Then, high performance RCLEDs are fabricated by using an optimal DDBR structure. The devices with DDBR show many advantages: a lower turn-on voltage of 1.78 V, under 20 mA injection current, the output power and the luminous efficiency of the device with/without DDBR gain the improvements of 27.7% and 26.8% respectively, under 0-100 mA injection current, the output power has unconspicuous downtrend, better characteristic saturation of optical power and temperature stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.