Abstract

AbstractOwing to lack of proper recycling methods, plastic flexible film wastes are usually directly discarded or incinerated, which brings about severe environmental pollution. Therefore, converting plastic wastes into value‐added products has received more and more attention in recent years. In this work, paper‐like composites derived from plastic flexible film wastes were prepared via the thermally induced phase separation method by adding polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) as a compatibilizer and fumed silica as an additive. The resulting paper‐like composites were characterized by SEM and infrared spectroscopy. Other properties such as mechanical properties, thermal properties, whiteness, printability and adsorption performance were also tested in detail. It was found that remarkable enhancements in mechanical, thermal and printable properties of the paper‐like composites were obtained when nano‐SiO2 loading was 2.5–3 wt%. Uniformly distributed holes that can endow good printability by providing space for ink or other functional molecules were observed by using SEM. Furthermore, the CIE whiteness value of the resulting composites can reach 91.6%–96.7% on adding nano‐SiO2. Additionally, the paper‐like composites integrating nano‐SiO2 and PE‐g‐MAH exhibited good solid ink affinity and high water or oil adsorption capacity. Thus, according to this research, high‐performance printable paper‐like composites used as major components of multifunctional papers can be prepared based on plastic flexible film wastes. © 2019 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.