Abstract

Solid state hybrid solar cells with hybrid organolead halide perovskites (CH3NH3PbBr3 and CH3NH3PbI3) as light harvesters and p-type polymer poly[N-9-hepta-decanyl-2,7-carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-di-hydropyrrolo[3,4-]pyrrole-1,4-dione] (PCBTDPP) as a hole transporting material were studied. The CH3NH3PbBr3-sensitized hybrid devices display an outstanding open circuit voltage (Voc) of ∼1.15 V, and the CH3NH3PbI3-based cells exhibit a power conversion efficiency (PCE) of ∼5.55% along with high stability. The present results show that PCBTDPP is superior to the model p-type polymer P3HT as a HTM in these hybrid solar cells to achieve remarkably high Voc and high PCE. The possible mechanisms have been suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.