Abstract
Epoxy-based adhesives reinforced with silica and alumina fillers (20, 40, and 60 phr) were prepared and successfully applied for lap-joint bonding of carbon fiber composite with steel. The mechanical properties of adhesives were assessed as different cure temperatures to find optimum cure temperature. Morphology of the reinforced epoxy adhesives was observed by optical microscopy to disclose the interplay between composite properties and distribution fashion of the silica and alumina fillers within the epoxy matrix. Thermal stability and interfacial interaction situation were explored by thermogravimetric and Fourier transform infrared spectroscopy analyses, respectively. Rheological behavior of the composite samples was also studied. Lap shear test was an indication for a considerable improvement of about 12% and 20%, compared to unfilled epoxy/hardener systems, for composites containing 60 phr of alumina and silica, respectively. However, the presence and population of voids in case of samples cured at elevated temperature deteriorated lap shear strength. Of note, the storage and loss modulus of the latter adhesive have been increased by 797% and 472%, respectively. Thermal stability on the basis of initial degradation temperature and char yield (> 500℃) of the assigned adhesive under N2 and air have also been enhanced. Higher performance of silica-based adhesives was mechanistically and morphologically discussed on the bedrock of formation of a 3D inter-connected network of filler particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.