Abstract

The challenge of producing lithium-ion batteries meeting performance requirements and low environmental impact is strictly related to the choice of materials as well as to the manufacturing processes. Most electrodes are currently prepared using poly(vinilydene fluoride) (PVDF) as binder. This fluorinated polymer is expensive and requires the use of a volatile and toxic organic solvent such as N-methyl-pyrrolidone (NMP) in the processing. Water soluble sodium carboxymethyl cellulose (CMC) can be a suitable substitute for PVDF as binder for both anodes and cathodes eliminating the necessity of NMP and thus decreasing the cost and the environmental impact of battery production. In this work, CMC has been successfully used to prepare efficient and stable anatase TiO 2 anodes by optimizing the electrode manufacturing process in terms of composition and compression. The stability and the high rate performances of the TiO 2/CMC are described and compared with those of TiO 2/PVDF electrodes. The compatibility of the TiO 2/CMC with a LiFePO 4 cathode in a full-cell is also reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.