Abstract

ABSTRACT Microbial fuel cell (MFC) is a promising technology for recovering energy in wastewater through bacterial metabolism. However, it always suffers from low power density and electron transfer efficiency, restricting the application. This study fabricated the MnCo2S4-Co4S3/bamboo charcoal (MCS-CS/BC) through an easy one-step hydrothermal method, and the material was applied to carbon felt (CF) to form high-performance MFC anode. MCS-CS/BC-CF anode exhibited lower Rct (10.1 Ω) than BC-CF (17.24 Ω) and CF anode (116.1 Ω), exhibiting higher electrochemical activity. MCS-CS/BC-CF anode promoted the electron transfer rate and resulted in enhanced power density, which was 9.27 times higher (980 mW m-2) than the bare CF (105.7 mW m-2). MCS-CS/BC-CF anode showed the best biocompatibility which attracted distinctly larger biomass (146.27 mg/μL) than CF (20 mg/μL) and BC-CF anode (20.1 mg/μL). The typical exoelectrogens (Geobacter and etc.) took dramatically higher proportion on MCS-CS/BC-CF anode (59.78 %) than CF (2.99 %) and BC-CF anode (26.67 %). In addition, MCS-CS/BC stimulated the synergistic effect between exoelectrogens and fermentative bacteria, greatly favoring the extracellular electron transfer rate between bacteria and the anode and the power output. This study presented an efficient way of high-performance anode electrocatalyst fabrication for stimulating MFC power generation, giving suggestions for high-efficient energy recovery from wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.