Abstract
AbstractSolution‐processed microelectronics offer advantages, including cost‐effectiveness, higher energy efficiency, and compatibility with rapid prototyping compared to their counterparts fabricated through traditional semiconductor manufacturing processes. Unfortunately, solution‐processed transistors exhibit wide performance variability and low yield. In this work, a solution‐processed transparent indium gallium zinc oxide (IGZO) thin film transistor with a low temperature‐annealed hafnium oxide dielectric layer is described. Post‐annealing temperatures for the sol–gel hafnium dioxide thin film are reduced to below 200 °C, significantly expanding the range of substrates on which the metal oxide dielectric can be deposited. The fabricated devices exhibit excellent characteristics with high field‐effect mobilities of over 85 cm2 V−1 s−1, along with low subthreshold swing below 140 mV dec−1, high on/off ratios, and near‐zero threshold voltages when operating stably at low‐operating voltages of 2 V. The solution processed transparent hafnium dioxide gate dielectric IGZO transistors are shown to exhibit comparatively significantly lower device variation and high yield, allowing for the reproducible fabrication of large‐area and transparent solution processed microelectronics systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.