Abstract
Face detection is crucial in the development of face recognition, expression, tracking, and classification. Conventional methods have accuracy constraints on several challenging conditions, including nonfrontal faces, occlusions, and complex backgrounds. However, the convolutional neural network (CNN) methods produce high performances despite a large amount of computation. Therefore, CNN requires expensive hardware and is not suitable for low-cost central processing units (CPUs). This article develops a light architecture for a CNN-based real-time face detector. The proposed architecture consists of two main modules, the backbone to extract distinctive facial features and multilevel detection to perform prediction at multiple scales. Furthermore, it utilizes several approaches to enhance the training result, including balancing loss and tweaks on the training configuration. The proposed detector has one stage and is trained using the input of images from WIDER FACE with challenges, which contains more challenging images than other datasets. As a result, the detector achieves state-of-the-art performance on several benchmark datasets compared with the other CPU-based models. Then, its efficiency is superior to that of competitors, as it runs at 53 frames per second on a CPU for video graphics array resolution images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.