Abstract

A new algorithm for calculating the spin- and parity-dependent shell model nuclear level densities using the moments method in the proton-neutron formalism is presented. A new, parallelized code based on this algorithm was developed and tested using up to 4000 cores for a set of nuclei from the sd-, pf-, and pf + g9/2 - model spaces. By comparing the nuclear level densities at low excitation energy for a given nucleus calculated in two model spaces, such as pf and pf + g9/2, one could estimate the ground state energy in the larger model space, which is not accessible to direct shell model calculations due to the unmanageable dimension. Examples for the ground state energies of for 64Ge and 68Se in the pf + g9/2 model space are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.