Abstract

In this paper, we are concerned with the construction and analysis of high order exponential splitting methods for the time integration of abstract evolution equations which are evolved by analytic semigroups. We derive a new class of splitting methods of orders three to fourteen based on complex coefficients. An optimal convergence analysis is presented for the methods when applied to equations on Banach spaces with unbounded vector fields. These results resolve the open question whether there exist splitting schemes with convergence rates greater then two in the context of semigroups. As a concrete application we consider parabolic equations and their dimension splittings. The sharpness of our theoretical error bounds is further illustrated by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.