Abstract

The paper proposes solving transient heat transfer in plates using high-order isogeometric analysis and high-order time integration schemes. The problem is often faced in fire-structure interaction where the heat transfer is coupled with the stress analysis. A major advantage for the proposed approach comes from high order continuity between elements. Thus, the need for rotational degrees of freedom is eliminated when analyzing the stresses in plates and the same mesh can also be used to recover the heat transfer patterns. To achieve the full potential of such high-order finite elements in space, we also use high-order time integration schemes so that the numerical solution can be significantly more accurate than the standard approaches. Furthermore, the isogeometric analysis is also used to represent the exact geometry thanks to the basis functions generated from Non-Uniform Rational B-Splines. Several test examples for the transient diffusion problem are presented. Compared to standard methods and for a prescribed accuracy the proposed approach requires significantly fewer degrees of freedom and a corresponding improvement in the computational efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.