Abstract

We develop a high-order, explicit method for acoustic scattering in three space dimensions based on a combined-field time-domain integral equation. The spatial discretization, of Nyström type, uses Gaussian quadrature on panels combined with a special treatment of the weakly singular kernels arising in near-neighbor interactions. In time, a new class of convolution splines is used in a predictor-corrector algorithm. Experiments on a torus and a perturbed torus are used to explore the stability and accuracy of the proposed scheme. This involved around one thousand solver runs, at up to 8th order and up to around 20,000 spatial unknowns, demonstrating 5–9 digits of accuracy. In addition we show that parameters in the combined field formulation, chosen on the basis of analysis for the sphere and other convex scatterers, work well in these cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.