Abstract

Monolithic integration of infrared photodetectors on a silicon platform is a promising solution for the development of scalable and affordable photodetectors and infrared focal plane arrays. We report on integration of submonolayer quantum dot quantum cascade detectors (SML QD QCDs) on Si substrates via direct growth. Threading dislocation density has been reduced to the level of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim 10^{7}$ </tex-math></inline-formula> cm <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{-2}$ </tex-math></inline-formula> with the high-quality GaAs-on-Si virtual substrate. We also conducted a morphology analysis for the SML QD QCDs through a transmission electron microscope strain contrast image and to the best of our knowledge, high quality InGaAs/GaAs SML QDs were clearly observed on silicon for the first time. Photoluminescence decay time of the as-grown SML QD QCDs on Si was measured to be around 300 ps, which is comparable to the reference QCDs on lattice-matched GaAs substrates. With the high-quality III-V epitaxial layers and SML QDs, the quantum cascade detectors on Si achieved a normal incident photoresponse temperature up to 160 K under zero bias.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.