Abstract

AbstractSodium superionic conductor Na3Zr2Si2PO12 (NZSP) is a promising material as a solid electrolyte for sodium‐ion batteries. The highest conductivity of ∼1.0 mS/cm at room temperature (RT) was reported for the compound with a Na content of approximately 3.3 per formula unit (f. u.) and when the material is synthesized with a final sintering temperature ≥1220°C. Herein, we propose a new synthesis method to enhance the conductivity of the NZSP by liquid‐phase sintering with the optimum amount of additive of amorphous‐Na2Si2O5. In this regard, a series of composite materials were prepared by mixing Na3Zr2Si2PO12 with amorphous‐Na2Si2O5 (NZSP/NS‐x wt.%; with x = 0.0, 2.5, 5.0, 7.5, 10.0) and sintering at a lower temperature of 1150°C. Enhanced conductivity of 1.7 mS/cm at RT has been achieved for the Na3Zr2Si2PO12/Na2Si2O5‐5.0 wt.% (NZSP/NS‐5.0) composite. The effects of additives on the NZSP phase formation, microstructure, and ion conductivity have been investigated by XRD, MAS NMR, SEM, and impedance spectroscopy. Our study demonstrates that the higher conductivity of the NZSP/NS‐5.0 composite is caused by the combined effect of increased Na content in the NZSP phase (by diffusion of Na+ ions from the liquid phase of NS to bare NZSP phase), higher density, and microstructures with lesser pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.