Abstract

AbstractPoly(butylene terephthalate‐co‐butylene 2,5‐furandicarboxylate) copolyesters (PBTFs) were synthesized from 1,4‐butanediol, dimethyl terephthalate (DMT), and 2,5‐furandicarboxylic acid (FDCA) by a two‐step polymerization method. Their chemical structures were confirmed by Fourier‐transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, and carbon nuclear magnetic resonance before thermal properties were explored with differential scanning calorimeter and thermogravimetric analyzer. Results showed that PBTFs changed from semi‐crystalline to completely amorphous when the content of FDCA unit was increased to 45 mol% at first, and then became crystallographic again with the further increment of FDCA unit to 75 mol%. For their mechanical properties, the tensile modulus and strength showed the similar trend, decreasing firstly and then increasing later. Their barrier to carbon dioxide and oxygen became better with the increasing of furan content due to the rigidity and higher polarity of furan ring. The performance of PBTFs copolyesters was investigated clearly, and the relative content of FDCA and DMT can be adjusted to satisfy different performance requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.