Abstract

It is a widely accepted premise in the scientific community and by athletes alike, that adding resistance exercise to a regular regimen of endurance training increases endurance performance in endurance-trained men. However, critical power (CP), capillarization, and myofiber size remain unaffected by this addition. Therefore, we tested whether the superimposition of resistance exercise with whole-body vibration and vascular occlusion (vibroX) would improve these variables in endurance-trained males relative to resistance exercise alone. Twenty-one young, endurance-trained males were randomly assigned either to a vibroX (n = 11) or resistance (n = 10) training group. Both groups trained in a progressive mode twice a week for 8 weeks. Pre and post training, histochemical muscle characteristics, thigh muscle size, endurance and strength parameters were determined. vibroX increased CP (P = 0.001), overall capillary-to-fiber ratio (P = 0.001) and thigh lean mass (P < 0.001), while these parameters were unaffected by resistance training. The gain in CP by vibroX was positively correlated with the gain in capillarization (R(2) = 0.605, P = 0.008), and the gain in thigh lean mass was paralleled by increases in MyHC-1 and MyHC-2 fiber cross-sectional areas and strength. Maximum voluntary torque and the finite work capacity above CP (W') increased significantly only following resistance training. We achieved a proof of concept by demonstrating that modification of resistance exercise by superimposing side-alternating whole-body vibration and sustained vascular occlusion induced further improvements in CP, capillarization and hypertrophy, all of which were not observed with resistance training alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.