Abstract

Catechol (CA) is an aromatic compound with important applications in the fine chemical and pharmaceutical fields. As an alternative strategy to petroleum-based chemical synthesis, the production of catechol by using microbial cell factories has attracted great interest. However, the toxicity of catechol to microbial cells significantly limits the efficient production of bio-based catechol via one-step fermentation. Therefore, in this study, a two-step strategy for the efficient synthesis of CA was designed. Protocatechuic acid (PCA) was first efficiently produced by the engineered Escherichia coli strain AAA01 via fermentation, and then PCA in the fermentative broth was converted into CA by the whole-cell biocatalyst AAA12 with PCA decarboxylase. By optimizing the expression of flavin isoprenyl transferases and protocatechuic acid decarboxylases, the titer of CA increased from 3.4 g/L to 15.8 g/L in 12 h through whole-cell biocatalysis, with a 365% improvement; after further optimizing the reaction conditions for whole-cell biocatalysis, the titer of CA achieved 17.7 g/L within 3 h, which is the highest titer reported so far. This work provides an effective strategy for the green biomanufacturing of toxic compounds by Escherichia coli cell factories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.